Vibrational Analysis of Peptides, Polypeptides, and Proteins. X. Poly(glycine I) and Its Isotopic Derivatives

Anil M. Dwivedi and S. Krimm*

Biophysics Research Division, The University of Michigan, Ann Arbor, Michigan 48109. Received June 3, 1981

ABSTRACT: The normal modes of various isotopic species of poly(glycine I) in the antiparallel-chain rippled-sheet structure have been calculated, as a test of the force field for the parent polypeptide. In the light of these results, and to improve the prediction of some of the CH₂ modes as well as the transferability of the force field, some small modifications have been made to our previous force field.⁵ This has resulted in a general improvement of predicted frequencies, particularly of CH₂ wag and CH₂ twist modes, and a very satisfactory accounting of the infrared bands of the isotopic molecules.

Introduction

The use of normal vibration calculations to provide reliable analyses of the infrared and Raman spectra of polypeptides, and thereby of related peptide and protein systems, depends on developing a force field with maximum transferability between different molecules. We have approached this problem by first analyzing simple peptide molecules^{1,2} and then extending this force field to glycine polypeptides.^{3,4} In the current series of studies our force field was further refined by using the spectra of poly-(glycine I)⁵ [(Gly I)_n] in the subsequently proposed⁶ antiparallel-chain rippled-sheet (APRS) structure, β -poly-(L-alanine)⁷ [β -(Ala)_n] and β -poly(L-alanylglycine)⁷ [β - $(Ala-Gly)_n$ in their known⁸ antiparallel-chain pleated-sheet (APPS) structure, and α -poly(L-alanine). This force field, together with our proposed transition dipole coupling mechanism, 10,11 has proved successful in predicting the characteristic modes of general β turns^{12,13} as well as the amide modes of specific β -turn structures in proteins¹⁴ and peptides.15,16

Since it is not possible at this stage to define a unique force field for as complex a molecule as a polypeptide, it is important to test the adopted force field on as many independent structures as feasible in order to substantiate its validity. One way of doing this is, as indicated above, to transfer it to other molecules. Another is to apply it to isotopic derivatives of a given molecule. We had done this previously³ for (Gly I)_n and its deuterated derivatives, but this was based on the (now known to be) incorrect APPS structure. We have now extended our calculations to APRS structures of isotopic derivatives of (Gly I)_n for which infrared spectra are available 17 and, in addition, have obtained and analyzed the spectrum of N-deuterated β -poly(L-alanine) $[\beta$ -(Ala-ND)_n]. 18

As a result of these combined studies on the deuterated derivatives of (Gly I)_n and β -(Ala)_n, we have made some changes in force constants. In the present paper we report on the results for APRS (Gly I)_n, its three deuterated derivatives, and its ¹⁵N derivative. In the accompanying paper ¹⁸ we give the results for β -(Ala)_n and its N-deuterated derivative.

Force Field Refinement

The APRS (Gly I)_n structural parameters used in the present calculations are the same as those used by Moore and Krimm,⁵ who have also given the symmetry species and selection rules for this structure. These show the following distribution of number and activity of the normal modes: $A_g[\nu(0,0)^5]$ -21, Raman; $A_u[\nu(0,\pi)]$ -20, infrared (||); $B_g[\nu(\pi,\pi)]$ -21, Raman; $B_u[\nu(\pi,0]$ -19, infrared (\bot). The

Table I Internal and Local Symmetry Coordinates for One Chemical Repeat Unit of Crystalline Poly(glycine I)

A. Internal Coordinates^a $R_1 = \Delta r(\mathbf{C}^{\alpha} - \mathbf{C})$ $R_{16} = \Delta\theta(C^{\alpha}-N-H)$ $R_{17} = \Delta\theta(N - C^{\alpha} - H)$ $R_{18} = \Delta\theta(N - C^{\alpha} - H^{\alpha})$ $R_{19} = \Delta\theta(C - C^{\alpha} - H)$ $R_{2} = \Delta r(C-N)$ $R_{3} = \Delta r(N-C^{\alpha})$ $R_4 = \Delta r(C=O)$ $R_{20} = \Delta\theta (C - C^{\alpha} - H^{\alpha})$ $R_s = \Delta r(N-H)$ $R_{21}^{20} = \widetilde{\Delta\theta}(\widetilde{H} - \widetilde{C}^{\alpha} - \widetilde{H}^{\alpha})$ $R_6 = \Delta r(C^{\alpha} - H)$ $R_{7}^{\circ} = \Delta r(\mathbf{C}^{\alpha} - \mathbf{H}^{\alpha})$ $R_{22} = \Delta\theta (C=O \cdot \cdot \cdot H)$ $R_8 = \Delta r (\mathbf{H} \cdot \cdot \cdot \mathbf{O})$ $R_{23} = \Delta \theta (N - H \cdot \cdot \cdot O)$ $R_{\mathfrak{g}} = \Delta r(H^{\alpha} \cdot \cdot \cdot H^{\alpha})$ $R_{24} = \Delta \omega (C=O)$ $R_{10} = \Delta \theta (C^{\alpha} - C - N)$ $R_{25} = \Delta \omega (N-H)$ $R_{11}^{10} = \Delta\theta (\mathbf{C} - \mathbf{N} - \mathbf{C}^{\alpha})$ $R_{12}^{12} = \Delta\theta (\mathbf{N} - \mathbf{C}^{\alpha} - \mathbf{C})$ $R_{26}^{26} = \Delta \tau (C^{\alpha} - C)$ $R_{27}^{27} = \Delta \tau (C-N)$ $R_{13} = \Delta\theta (C^{\alpha} - C = O)$ $R_{28} = \Delta \tau (N - C^{\alpha})$ $R_{14} = \Delta\theta (N-C=0)$ $R_{29} = \Delta \tau (C = O \cdot \cdot \cdot H)$ $R_{30} = \Delta \tau (N - H \cdot \cdot \cdot O)$ $R_{15} = \Delta \theta (\text{C--N--H})$

B. Local Symmetry Coordinates

```
N—C^{\alpha} stretch
 S_1 = R_3
                                                                      C<sup>\alpha</sup>-C stretch
 S_2 = R_1
 S_3 = R_2
                                                                     C-N stretch
 S_4 = R_4
                                                                      C=O stretch
 S_5 = R_5
                                                                     N-H stretch
 S_6 = R_6 + R_7
                                                                      CH<sub>2</sub> symmetric stretch
 S_7 = R_6 - R_7
                                                                      CH<sub>2</sub> antisymmetric stretch
 S_8 = R_8
                                                                     H \cdot \cdot \cdot O stretch
                                                                     H^{\alpha}. \cdot \cdot H^{\alpha} stretch
 S_9 = R_9
S_9 = R_9
S_{10} = 2R_{11} - R_{15} - R_{16}
S_{11} = 5R_{12} - R_{17} - R_{18} - R_{19} - R_{20} - R_{21}
S_{12} = 2R_{10} - R_{13} - R_{14}
S_{13} = R_{13} - R_{14}
S_{14} = R_{15} - R_{16}
S_{14} = R_{15} - R_{16}
                                                                     CNC<sup>α</sup> deformation
                                                                     NC<sup>α</sup>C deformation
                                                                     C^{\alpha}CN deformation
                                                                     C=O in-plane bend
                                                                     N-H in-plane bend
\tilde{S}_{15}^{14} = \tilde{R}_{22}^{15}
                                                                     C=O···H in-plane bend
S_{15} = R_{22}
S_{16} = R_{23}
S_{17} = 4R_{21} - R_{17} - R_{18} - R_{19} - R_{20}
S_{18} = R_{17} + R_{18} - R_{19} - R_{20}
S_{19} = R_{17} - R_{18} - R_{19} + R_{20}
S_{20} = R_{17} - R_{18} + R_{19} - R_{20}
S_{33} = R_{34} - R_{34} + R_{35} - R_{20}
                                                                     N-H\cdots O in-plane bend
                                                                     CH2 bend
                                                                    CH<sub>2</sub> wag
CH<sub>2</sub> twist
                                                                     CH, rock
S_{21} = R_{24}
                                                                     C=O out-of-plane bend
 S_{22}^{21} = R_{25}^{24}
                                                                     N-H out-of-plane bend
 S_{23} = R_{26}
                                                                     C^{\alpha}—C torsion
S_{24}^{23} = R_{27}^{26}
                                                                     C-N torsion
S_{25} = R_{28}
                                                                     N-C^{\alpha} torsion
S_{26} = R_{29}
                                                                     C=O···H torsion
                                                                     N-H \cdot \cdot \cdot O torsion
S_{27} = R_{30}
```

 a Δr = bond stretch, $\Delta \theta$ = angle bend, $\Delta \omega$ = out-of-plane bend, $\Delta \tau$ = bond torsion.

internal and local symmetry coordinates of one chemical repeat unit used in our calculations are given in Table I, where the definitions follow those used previously.⁵ The unit cell of APRS (Gly I)_n has four chemical repeat units,

Table II Force Constants for Crystalline Poly(glycine I)

f	orce constant ^a	value ^b	force constant a	value ^b
1.	$f(NC^{\alpha})$	5.043	42. $f(C^{\alpha}C,C^{\alpha}CO)$	0.200
	$f(\mathbf{C}^{\alpha}\mathbf{C})$	4.409	43. $f(C^{\alpha}C,NC^{\alpha}H)$	
3.	f(CN)	6.415	$f(C^{\alpha}C,NC^{\alpha}H^{\alpha})$	0.026
	f(CO)	9.882	44. $f(C^{\alpha}C,CC^{\alpha}H)$	0.005
5.	f(NH)	5.840	$f(C^{\alpha}C,CC^{\alpha}H^{\alpha})$	0.205
6.	$f(\mathbf{C}^{\alpha}\mathbf{H})$ {	1 561	45. $f(CN,C^{\alpha}CN)$	0.300
	$f(\mathbf{C}^{\alpha}\mathbf{H}^{\alpha})$	4.564	46. $f(CN,CNC^{\alpha})$	0.300
7.	$f(\mathbf{H} \cdot \cdot \cdot \mathbf{O})$	0.125	47. $f(CN,NCO)$	0.200
8.	$f(\mathbf{H}^{\alpha} \cdot \cdot \cdot \dot{\mathbf{H}}^{\alpha})$	0.0027	48. $f(CN,CNH)$	0.294
	$f(NC^{\alpha}C)$	0.819	49. $f(CO,C^{\alpha}CO)$	0.450
	$f(C^{\alpha}CN)$	1.400	50. $f(CO,NCO)$	0.450
	$f(CNC^{\alpha})$	0.687	51. $f(CO, C^{\alpha}CN)$	-0.150
	f(NCO)	1.246	52. $f(NC^{\alpha}C,C^{\alpha}NH)$	-0.100
13.	f(NCαH) }	0.715	53. $f(NC^{\alpha}C,NC^{\alpha}H)$ }	-0.031
	$f(NC^{\alpha}H^{\alpha})^{\beta}$	0.715	$f(NC^{\alpha}C,NC^{\alpha}H^{\alpha})$	-0.031
14.	$f(\mathbf{C}^{\alpha}\mathbf{NH})$	0.527	54. $f(NC^{\alpha}C,CO \text{ ob})$	-0.0725
	$f(C^{\alpha}CO)$	1.246	55. $f(NC^{\alpha}C,NH \text{ ob})$	0.1092
16.	$f(CC^{\alpha}H)$ }	0.684	56. $f(C^{\alpha}CN,CNH)$	0.200
	$f(CC^{\alpha}H^{\alpha})^{\beta}$	0.064	57. $f(CNC^{\alpha}, C^{\alpha}NH)$	-0.040
17.	f(CNH)	0.527	58. $f(NC^{\alpha}H,CC^{\alpha}H)$	0.019
	$f(H^{\alpha}C^{\dot{\alpha}}H)$	0.584	$f(NC^{\alpha}H^{\alpha},CC^{\alpha}H^{\alpha})$	0.013
	$f(\text{CO}\cdot\cdot\cdot\text{H ib})$	0.010	59. $f(NC^{\alpha}H,HC^{\alpha}H^{\alpha})$	0.0615
	$f(NH \cdot \cdot \cdot O \text{ ib})$	0.0506	$f(NC^{\alpha}H^{\alpha},HC^{\alpha}H^{\alpha})$	
	f(CO ob)	0.587	60. $f(NC^{\alpha}H^{\alpha},NH \text{ ob})$	0.1022
	f(NH ob)	0.129	61. $f(NC^{\alpha}H,NC^{\alpha}H^{\alpha})$	0.0463
	$f(NC^{\alpha} t)$	0.037	62. $f(NC^{\alpha}H,NH \text{ ob})$	0.0456
	$f(\mathbf{C}^{\alpha}\mathbf{C} \mathbf{t})$	0.037	63. $f(C^{\alpha}CO, CC^{\alpha}H^{\alpha})$	0.150
	f(CN t)	0.680	64. $f(C^{\alpha}CO,CC^{\alpha}H)$	0.100
	f(NH t)	0.0015	65. f(NCO,CNH)	0.251
	f(CO t)	0.001	66. $f(C^{\alpha}NH,CNH)$	0.0065
	$f(NC^{\alpha}, C^{\alpha}C)$	0.300	67. $f(C^{\alpha}NH,NC^{\alpha}H^{\alpha})$	0.100
	$f(C^{\alpha}C,CN)$	0.300	68. $f(C^{\alpha}NH,NC^{\alpha}H)$	0.031
	$f(NC^{\alpha},CN)$	0.300	69. $f(CC^{\alpha}H,CC^{\alpha}H^{\alpha})$	-0.032
	$f(C^{\alpha}C,CO)$	0.500	70. $f(CC^{\alpha}H,HC^{\alpha}H^{\alpha})$	0.0398
	f(CN,CO)	0.500	$f(CC^{\alpha}H^{\alpha},HC^{\alpha}H^{\alpha})$	
	$f(C^{\alpha}H^{\alpha}, C^{\alpha}H)$	0.010	71. $f(CC^{\alpha}H,CO \circ b)$	0.100
	$f(\mathbf{C}^{\alpha}\mathbf{H}^{\alpha},\mathbf{H}^{\alpha}\mathbf{H}^{\alpha})$ $f(\mathbf{NC}^{\alpha},\mathbf{CNC}^{\alpha})$	$-0.0075 \\ 0.300$	$f(CC^{\alpha}H^{\alpha},CO \text{ ob})$ 72. $f(CO \text{ ob},NH \text{ ob})$	0.010
აა. აგ	$f(NC^{\alpha}, NC^{\alpha}C)$	0.300	72. f(CO ob, NH ob) 73. f(CO ob, CN t)	$0.010 \\ 0.0111$
30. 27	$f(NC^{\alpha}, C^{\alpha}NH)$			
ა / . ვი	$f(NC^{\alpha}, NC^{\alpha}H)$ {	0.294	74. f(NH ob,CN t) 75. F _{10,1}	$^{-0.1677}_{0.102}$
JO.	$f(NC^{\alpha},NC^{\alpha}H^{\alpha})$	0.517	76. $F_{01,1}$	-0.244
39	$f(NC^{\alpha},CC^{\alpha}H)$		77. $F_{11,I}$	0.160
00.	$f(NC^{\alpha},CC^{\alpha}H^{\alpha})$	0.026	78. $F_{10,II}$	-0.036
40	$f(C^{\alpha}C,NC^{\alpha}C)$	0.300	79. $F_{01,II}$	-0.0095
	$f(C^{\alpha}C,C^{\alpha}CN)$	0.300	80. $F_{11,II}$	0.0091
	, (= 0,0 01.)	0.000	11,11	

 $^af(AB) = AB$ bond stretch, f(ABC) = ABC angle bend, f(X,Y) = XY interaction, $F = \text{transition dipole coupling}; ^{10}$ ib = in-plane bend, ob = out-of-plane bend, t = torsion. b Units are mdyn/A for stretch and stretch, stretch force constants, mdyn for stretch, bend force constants, and mdyn·A for all others.

and their local symmetry coordinates are combined to give symmetry coordinates for each species in the same way as was done previously.⁵

The valence force field of Moore and Krimm⁵ was used as a starting point for the present refinement. It was first tested on the isotopic molecules $-(NDCH_2CO)-_n$, $-(NHCD_2CO)-_n$, $-(NDCD_2CO)-_n$, and $-(^{15}NHCH_2CO)-_n$. For most of the modes the agreement was reasonable, but significant discrepancies were found for frequencies associated with CH2 wag, CH2 twist, CO out-of-plane bend, and the two Raman bands observed at 327 and 82 cm⁻¹. Before the actual refinement was started, a calculation was done for $-(NHCH_2CO)-_n$ in which all possible diagonal and off-diagonal force constants were included. The purpose of this was to obtain the detailed Jacobian matrix in order to determine which force constants were particularly important in influencing the above discrepancies. As a result we found it to be essential to include in the force field six new force constants: $f(CNC^{\alpha}, C^{\alpha}NH)$, $f(NC^{\alpha}C, NC^{\alpha}H)$, f-(CNH,C $^{\alpha}$ NH), $f(C^{\alpha}H^{\alpha},H^{\alpha}...H^{\alpha})$, $f(CO,C^{\alpha}CN)$, and f- $(C^{\alpha}H,C^{\alpha}H^{\alpha})$. In addition, of the 13 force constants previously set equal to zero,⁵ 4 were judged to be significant enough to be included in the refinement, viz., $f(NC^{\alpha}C, NH \text{ ob})$, $f(C^{\alpha}CO, CC^{\alpha}H^{\alpha})$, $f(NC^{\alpha}H, NH \text{ ob})$, and $f(CC^{\alpha}H^{\alpha}, CO \text{ ob})$. In all, a total of 18 force constants were chosen to be modified in the least-squares refinement, using only infrared 17 and Raman 19 data on $-(NHCH_{2}CO)_{-n}$.

This refined force field gave quite reasonable results for all of the isotopic molecules. We next decided to transfer this force field to β -(Ala)_n, which, of course, has the APPS structure. When both (Gly I)_n and β -(Ala)_n were considered together, it was felt necessary to alter an additional 9 force constants for (Gly I)_n in order to achieve maximum transferability of the force field. This alteration was accomplished manually.

A complete listing of the revised force field is given in Table II. Of the 80 nonzero force constants, 53 (including 6 for transition dipole coupling effects) are the same as reported earlier, 521 are modified (including 4 which previously had zero values), and 6 are new force constants not included in the earlier force field. The NH stretching force constant was adjusted to make the calculated frequency agree with the unperturbed NH stretching frequency, found 5 at 3272 cm⁻¹. The only significant change in a

Table III
Observed and Calculated Frequencies (in cm⁻¹) of Poly(glycine I)

Raman	IR	Ag	A _u	Bg	B _u	potential energy distribution b
						(3111011 00)
						$-(NHCH_2CO)-n$
		3272	3272			NH s (98) NH s (98)
			0212	3271		NH s (98)
	$3272~\mathrm{S}^c$	2004			3271	NH s (98)
2932 S 2932 S		2934		2934		CH ₂ as (98) CH ₂ as (98)
1002 0	2929 W			2001	2929	CH ₂ as (99)
2000 M	2929 W	0005	2928			CH ₂ as (99)
2869 M 2869 M		2865		2865		CH ₂ ss (98) CH ₃ ss (98)
2000 2:2	2869 VW		2861			CH ₂ ss (99)
	2869 VW			1605	2861	$CH_2 \text{ ss } (99)$
	1685 M		1689	1695		CO s (77), CN s (15), C^{α} CN d (11) CO s (75), CN s (20), C^{α} CN d (11)
1674 S		1677				$CO s (74), CN s (21), C^{\alpha}CN d (11)$
	1636 S			1600	1643	$CO s (69), CN s (22), C^{\alpha}CN d (11)$
				1602	1572	NH ib (56), CN s (19), $C^{\alpha}C$ s (12) NH ib (51), $C^{\alpha}C$ s (16), CN s (14)
	1517 S		1515			NH ib (35), CN s (28), $C^{\alpha}C$ s (17), CO ib (14)
L515 W		$1514 \\ 1454$				NH ib (35), CN s (27), $C^{\alpha}C$ s (17), CO ib (14)
460 S		1494	1454			CH ₂ b (66), CH ₂ w (16) CH ₃ b (65), CH ₄ w (17)
				1441		CH_2 b (96)
1410 M	1432 S	1415			1439	CH ₂ b (96) CH ₃ w (41), CH ₂ b (31), NH ib (14)
LATO M	1408 W	1410	1415			CH ₂ w (40), CH ₂ b (33), NH ib (13)
1341 W				1341	1000	$CH_2 \times (84)$
	1338 W			1304	1338	$CH_2 \le (79)$ NH ib (30), CO ib (19), CN s (18), $C^{\alpha}C$ s (16)
	1295 W			1001	1286	NH ib (39), $C^{\alpha}C$ s (17), CO ib (16), CN s (12)
1255 M		1253	1050			CH ₂ tw (76), CH ₂ w (17)
1234 S			1253	1243		CH ₂ tw (76), CH ₂ w (17) CH ₂ tw (93)
	1236 M				1242	CH, tw (92)
l 220 W	1214 W	1213	1212			NC^{α} s (29), NH ib (23), CH ₂ w (18), CH ₂ tw (16), CN s (13) NC^{α} s (29), NH ib (23), CH ₂ w (18), CH ₂ tw (15), CN s (13)
1162 M	1214 W	1153	1212			NC^{α} s (50), $C^{\alpha}C$ s (13), NH ib (12)
			1152			NC^{α} s (50), $C^{\alpha}C$ s (14), NH ib (12)
1021 VS	1016 M			1015	1014	NC^{α} s (77) , $C^{\alpha}C$ s (10) NC^{α} s (77) , $C^{\alpha}C$ s (10)
	1010141	1002			1011	CH_{2} r (45), CO s (11), $C^{\alpha}C$ s (10)
	007.111		1000		000	CH ₂ r (49), CO s (10)
	987 W			979	980	CH ₂ r (68), CN s (10) CH ₂ r (70), CN s (10)
		946				CH_2 r (29), CN s (12), $C^{\alpha}C$ s (11), $NC^{\alpha}C$ d (10)
	936 M 888 W		940		900	CH, $r(25)$, CN $s(13)$, $C^{\alpha}C$ $s(12)$, $NC^{\alpha}C$ $d(10)$
884 M	000 W			890	090	$C^{\alpha}C$ s (29), CN s (21), CH ₂ r (14), CO s (13) $C^{\alpha}C$ s (31), CN s (24), CO s (12), CH ₂ r (12)
				768		CO ib (16), NC^{α} s (15), $C^{\alpha}C$ s (15), CN t (12), $NC^{\alpha}C$ d (11)
				736	767	$C^{\alpha}C$ s (19), CO ib (17), NC $^{\alpha}$ s (16), NC $^{\alpha}C$ d (11), CNC $^{\alpha}$ d (11) CN t (63), NH···O ib (15), NH ob (11), H···Os (11)
	708 S			100	718	CN t (75), NH···O ib (19), NH ob (11), H···O s (11) CN t (75), NH···O ib (19), NH ob (16), H···O s (10)
		700	718			CN t (79), NH ob (26), NH···O ib (23), H···O s (10)
		702 630				CN t (79), NH ob (29), NH···O ib (25), H···O s (15) CO ib (36), CO ob (24), $C^{\alpha}C$ s (10)
	628 W		629			CO ib (37), CO ob (23), $C^{\alpha}C$ s (10)
	614 M			610	621	CO ob (67), C ^{\alpha} CN d (15), NH ob (14), NC ^{\alpha} C d (10)
				613	589	CO ob (59), $C^{\alpha}CN$ d (20), NH ob (17), NC $^{\alpha}C$ d (11) $C^{\alpha}CN$ d (47), CO ob (17)
599 W				587		$C^{\alpha}CN d (43)$, CO ob (24)
589 W	589 M	580	579			CO ob (45), CO ib (28), $C^{\alpha}C$ s (12) CO ob (45), CO ib (27), $C^{\alpha}C$ s (11)
327 W	009 W		513	323		$NC^{\alpha}C$ d (21), CO ib (16), NH ob (15)
	321 W	001			320	$NC^{\alpha}C$ d (21), CO ib (18), NH ob (15)
	285 W	291	290			$C^{\alpha}CN \ d \ (51), \ NC^{\alpha}C \ d \ (21), \ NC^{\alpha} \ s \ (10)$ $C^{\alpha}CN \ d \ (56), \ NC^{\alpha}C \ d \ (19), \ NC^{\alpha} \ s \ (12)$
	200 11		200		252	CNC^{α} d (41), CO ib (28)
260 W	017 117		006	2 50		$CNC^{\alpha} d(41)$, CO ib (30), NH ob (15)
	217 W	214	226			CNC^{α} d (68), CO ib (10), $H \cdot \cdot \cdot O$ s (10) CNC^{α} d (74)
211 W		414				CNC u(14)
211 W 170 W		178	180			NH ob (70), CO ob (20) NH ob (67), CO ob (15), C ^α CN d (12), CH ₂ w (12)

Table III (Continued)

ob	served ^a		calcu			
Raman	IR	Ag	A _u	B_{g}	Bu	potential energy distribution b
110 M		135				H···O s (29), CN t (25), NC °C d (15)
112 M			108	111		$H \cdots O s (78)$, CN t (18) NC $^{\alpha}$ C d (46), C $^{\alpha}$ C t (16), NH ob (16), NC $^{\alpha}$ t (14)
82 S		88				NH ob (43), CN t (27), NC $^{\alpha}$ C d (26), H $^{\alpha}$. ··H $^{\alpha}$ s (13), NC $^{\alpha}$ t (12),
				71		$H \cdot \cdot \cdot O s (11)$ $C^{\alpha}C t (35), NC^{\alpha} t (24), CN t (22), NH ob (22), NH \cdot \cdot \cdot O ib (17)$
			37			$NH \cdot \cdot \cdot O$ ib (38), $CO \cdot \cdot \cdot H$ ib (28), NH ob (18), $H \cdot \cdot \cdot O$ s (17)
		12		31		NH···O ib (35), CO···H ib (31), CN t (21), NH ob (16), NC $^{\alpha}$ t (13) NH t (52), CO t (34)
		12				
		2934				-(NDCH ₂ CO)- _n CH ₂ as (98)
		2001		2934		CH_2 as (98)
	2929 W 2929 W		2928		2929	CH_{2}^{2} as (99) CH_{3} as (99)
	2929 W		4940	2866		CH ₂ as (99) CH ₂ ss (98)
	0050 1111	2865	0001			CH_2 ss (98)
	2870 VW 2870 VW		2861		2861	$CH_2 \text{ ss } (99)$ $CH_2 \text{ ss } (99)$
		2406				ND's (96)
			2406	2405		ND s (96) ND s (97)
	$\sim 2457~\mathrm{S}^c$				2405	ND s (97)
	1680 M		1685	1690		CO s (76), CN s (18), C^{α} CN d (10) CO s (76), CN s (19), C^{α} CN d (10)
		1673	1000			$CO s (75), CN s (21), C^{\alpha}CN d (10)$
	1629 S			1505	1639	CO s (68), CN s (23), C $^{\alpha}$ CN d (10) C $^{\alpha}$ C s (27), CN s (21), ND ib (14), CO ib (13), CH ₂ w (12), NC $^{\alpha}$ s (13)
				1000		CH ₂ b (11)
					1492	$C^{\alpha}C$ s (29), CN s (15), CO s (14), CH_2 b (13), ND ib (12), CO ib (12),
	1475 S		1486			CH_2 w (11), NC^{α} s (10) $C^{\alpha}C$ s (31), CN s (22), CH_2 w (17), CO ib (16)
		1485				$C^{\alpha}C$ s (32), CN s (21), CH ₂ w (17), CO ib (15)
		1441	1441			CH ₂ b (86) CH ₂ b (86)
	1400 0			1429	1.00	CH_{2}^{-} b (90)
	1432 S	1352			1428	CH_{2}^{2} b (87) CH_{3}^{2} w (69), NC^{α} s (16), CN s (14)
	1352 M		1352			$CH_{2} = w (69), NC^{\alpha} = (16), CN = (14)$
				1335	1334	CH ₂ w (78) CH ₂ w (77), CN s (10)
		1249				CH ₂ tw (93)
			1249	1243		CH ₂ tw (93) CH ₂ tw (92)
	1237 M			1210	1242	CH_2 tw (92)
		1151	1151			NC^{α} s (69), $C^{\alpha}CN$ d (11) NC^{α} s (69), $C^{\alpha}CN$ d (11)
			1101	1074		ND ib (55), CH, r (19), CO ib (11)
		1036			1055	ND ib (49) , CH ₂ r (26) , CO ib (10) CH ₂ r (23) , ND ib (21) , C ^{α} C s (19)
		1050	1036			$CH_{2} r (23), ND ib (22), C^{\alpha}C s (19)$
	1015 M			1006	1006	NC^{α} s (78), $C^{\alpha}C$ s (10) NC^{α} s (78), $C^{\alpha}C$ s (11)
	950 W		954	1006		CH ₂ r (50), ND ib (16), CO ob (11)
		953		020		CH ₂ r (50), ND ib (16), CO ob (11)
				939	932	CH ₂ r (58), ND ib (23) CH ₃ r (49), ND ib (31)
		899	000			ND ib (38), CN s (20), CO s (11)
			892		883	ND ib (38), CN s (21), CO s (12) $C^{\alpha}C$ s (29), CN s (25), CO s (13)
				882		$C^{\alpha}C s (30), CN s (28), CO s (13)$
				754	755	$C^{\alpha}C$ s (20), CO ib (20), CNC $^{\alpha}$ d (15), NC $^{\alpha}$ s (14), NC $^{\alpha}C$ d (11) CO ib (20), $C^{\alpha}C$ s (19), CNC $^{\alpha}$ d (15), NC $^{\alpha}$ s (14), NC $^{\alpha}C$ d (11)
	00= ***			636		CO ob (69), CN t (14)
	625 W	620			627	CO ob (77) CO ob (32), CO ib (29), CH, r (10)
	614 W	- La	620			CO ob (31), CO ib (29), CH ₂ r (10)
	572 M	578	579			CO ob (38), CO ib (34), $C^{\alpha}C$ s (13) CO ob (37), CO ib (36), $C^{\alpha}C$ s (14)
		010			572	$C^{\alpha}CN \stackrel{d}{d} (53)$
			522	571		$C^{\alpha}CN \ d \ (52), \ CO \ ob \ (10)$ $CN \ t \ (72), \ ND \ ob \ (34), \ ND \cdots O \ ib \ (23), \ D\cdots O \ s \ (19)$
			024	519		CN t (71), ND ob (37), ND···O ib (21), D···O s (14), CO ob (10)
	504 S	506			513	CN t (80), ND ob (34), ND···O ib (23), D···O s (14) CN t (82), ND ob (31), ND···O ib (26), D···O s (14)
		500				011 V (02), 11D 00 (01), 11D 0 10 (20), D 0 0 8 (14)

Table III (Continued)

obs	erved ^a		calcu	lated		
Raman	IR	Ag	Au	Bg	Bu	potential energy distribution b
-		287	005	323	320	NC °C d (21), CO ib (16), ND ob (15) NC °C d (21), CO ib (17), ND ob (15) C °CN d (50), NC °C d (21), NC °c s (11) C °CN d (54), NC °C d (19), NC °c s (12)
			285 224	247	250	CNC $^{\alpha}$ d (41), CO ib (28), ND ob (11) CNC $^{\alpha}$ d (41), CO ib (30), ND ob (17) CNC $^{\alpha}$ d (68), CO ib (10), D···O s (10)
		212				$CNC^{\alpha} d(74)$
		177	180		139	ND ob (68), CO ob (20) ND ob (64), CO ob (15), C ^α CN d (12), NC ^α s (10), CH ₂ w (10) D···O s (48), CN t (43), ND ob (35), C ^α C t (11)
		135		111		$D \cdot \cdot \cdot O s$ (29), $CN t$ (25), $NC^{\alpha}C d$ (15) $D \cdot \cdot \cdot \cdot O s$ (79), $CN t$ (17)
		87	107			NC $^{\alpha}$ C d (47), ND ob (17), C $^{\alpha}$ C t (16) NC $^{\alpha}$ t (15) ND ob (43), CN t (27), NC $^{\alpha}$ C d (27), H $^{\alpha}$ ···H $^{\alpha}$ s (13), NC $^{\alpha}$ t (12), D···O s (10)
			2.0	69		$C^{\alpha}C t (35), NC^{\alpha} t (25), ND ob (20), CN t (20), ND \cdots O ib (17)$
			36	31		ND···O ib (39), CO···D ib (28), ND ob (18), D···O s (17) ND···O ib (36), CO···D ib (31), CN t (21), ND ob (16), NC $^{\alpha}$ t (13)
		12				ND t (52), CO t (34)
		3272				-(NHCD ₂ CO)- _n NH s (98)
			3272	3271		NH s (98) NH s (98)
	$3266~\mathrm{S}^c$				3271	NH s (98)
		2191		2193		CD_2 as (97) CD_2 as (97)
	2165 W 2165 W		2187		2189	CD_2 as (97) CD_2 as (97)
	2200 .,	2100		2099		CD_2 ss (95)
	2118 W		2097	2000		$CD_2 \text{ ss } (96)$ $CD_2 \text{ ss } (96)$
	2118 W			1687	2096	CD_2 ss (96) CO s (80), CN s (13), $C^{\alpha}CN$ d (11)
	1684 M	1669	1681			CO s (78), CN s (20), C ^{\alpha} CN d (11) CO s (77), CN s (21), C ^{\alpha} CN d (11)
	1627 S	1000		1500	1630	CO s (77), CN s (19), C^{α} CN d (12)
				1588	1559	NH ib (59), CN s (25), $C^{\alpha}C$ s (10) NH ib (53), CN s (23), $C^{\alpha}C$ s (14), NC^{α} s (10)
	1498 S	1510	1511			NH ib (40), CN s (30), CO ib (14), $C^{\alpha}C$ s (14) NH ib (40), CN s (29), CO ib (14), $C^{\alpha}C$ s (14)
		1333	1334			NH ib (40), $C^{\alpha}C$ s (31), CD_2 w (16) NH ib (41), $C^{\alpha}C$ s (31), CD_2 w (16)
	1297 M	1000		1305	1005	NH ib (36), C°C s (22), CO ib (17), CN s (15) NH ib (42), C°C s (20), CO ib (15), CN s (11)
		1186			1200	NC^{α} s (70), CD_2 w (17)
	1189 M		1185	1109		NC^{α} s (70), CD_2 w (17) CD_2 w (37), CD_2 b (25), $C^{\alpha}C$ s (15)
	1099 W	1074			1108	CD_{2}^{2} w (38), CD_{2}^{2} b (25), $C^{\alpha}C$ s (15) CD_{2} b (61)
	1073 W	10.1	1071	1051		CD_2 b (65)
				1051	1050	CD_2 b (60), CD_2 w (32) CD_2 b (60), CD_2 w (32)
	1015 W	1021	1019			CD_{2}^{2} b (27), CD_{2}^{2} w (19), CN s (11) CD_{2} b (23), CD_{2} w (21), CN s (12)
				989	990	NC^{α} s (61), CN s (16) NC^{α} s (62), CN s (15)
	000 111			930	0.00	$CD_2 tw (45), C^{\alpha}C s (11)$
	928 W	906			929	$CD_2 \text{ tw } (42), C^{\alpha}C \text{ s } (10)$ $CD_2 \text{ tw } (86)$
			906		895	CD ₂ tw (88) CD ₂ tw (33), CN s (15), CD ₂ r (12)
		885		892		CD_{2}^{2} tw (30), CN s (17), CD_{2}^{2} r (13) CD_{2} w (27), CD_{3} r (16), $C^{\alpha}C$ s (10)
	866 W		883			$CD_2 \le (26), CD_2 \le (18), C^{\alpha}C \le (10)$
		838	834			CD ₂ r (34), CO ob (18), NH ob (11), CD ₂ b (11) CD ₂ r (33), CO ob (17), NH ob (10), CD ₂ b (10)
				804	801	CD_2 r (45), $C^{\alpha}C$ s (15), $C^{\alpha}CN$ d (10) CD_2 r (49), $C^{\alpha}C$ s (15), $C^{\alpha}CN$ d (10)
				742		CN't (60), NH ob (21), NH···O ib (18), H···O s (14) CN't (56), NH ob (23), NH···O ib (19), H···O s (11)
	700 M	gon	707		. 20	$CN t (74), NH ob (22), NH \cdots O ib (21), H \cdots O s (18), CD, w (12)$
		689		685		CN t (75), NH ob (23), NH···O ib (23), H···O s (14), CD, w (13) CO ib (14), C $^{\infty}$ C s (14), NC $^{\infty}$ C d (12), CD ₂ r (12), CN t (12)

Table III (Continued)

	served ^a		calcu			
Raman	IR	A_{g}	Au	Bg	Bu	potential energy distribution ^b
					681 606	CN t (24), CO ib (13), $C^{\alpha}C$ s (12), $NC^{\alpha}C$ d (11), CD_2 r (10) CO ob (62), $C^{\alpha}CN$ d (15), NH ob (12), $NC^{\alpha}C$ d (10)
		600			000	CO ib (54), C°C s (17)
	610 M		600	500		CO ib (55), C ^o C s (18)
	564 M			598	541	CO ob (58), $C^{\alpha}CN$ d (18), NH ob (16) $C^{\alpha}CN$ d (39), CD_2 w (22), CO ob (13)
				539		C ^{\alpha} CN d (37), CD ₂ w (22), CO ob (16)
	534 M	531	528			CO ob (50), CD ₂ r (30) CO ob (49), CD ₂ r (31)
	001111		020	295		CO ib (33), NC C d (26)
			277		294	CO ib (35), $NC^{\alpha}C$ d (26) $C^{\alpha}CN$ d (55), $NC^{\alpha}C$ d (20), NC^{α} s (10)
		276	211			C°CN d (51), NC°C d (23)
				006	226	$CNC^{\alpha} d (34), NH ob (17), CO ib (11)$
			216	226		CNC^{α} d (35), NH ob (24), CO ib (13) CNC^{α} d (67), CO ib (11)
		205				CNC^{α} d (75), CO ib (10)
		175	177			NH ob (70), CO ob (20), CD ₂ w (11) NH ob (68), CO ob (16), CD ₂ w (13), C ^α CN d (13), NC ^α s (11)
					139	$H \cdot \cdot \cdot O s (47)$, CN t (46), NH ob (36), $C^{\alpha}C t (11)$
		133		109		$H \cdot \cdot \cdot O s (31), CN t (29), NC^{\alpha}C d (11)$ $H \cdot \cdot \cdot O s (78), CN t (18)$
			101	100		$NC^{\alpha}C d (42), C^{\alpha}C t (17), NC^{\alpha} t (15), NH ob (14)$
		80		70		NH ob (42), NC α C d (27), CN t (23), D α ···D α s (14), NC α t (14)
			35	10		$C^{\alpha}C t (35), NC^{\alpha} t (25), CN t (22), NH ob (21), NH \cdot \cdot \cdot O ib (16)$ NH · · · O ib (38), CO · · · H ib (28), NH ob (19), H · · · O s (16)
		1.0		31		$NH \cdot \cdot \cdot O$ ib (36), $CO \cdot \cdot \cdot H$ ib (31), $CN t (22)$, NH ob (16), $NC^{\alpha} t (18)$
		12				NH t (52), CO t (34)
		0.407				$-(NDCD_2CO)_n$
		2407	2406			ND s (96) ND s (96)
	0.450 00			2405	0405	ND s (97)
$\sim 2458 \; \mathrm{S}^c$			2192	2405	ND s (97) CD ₂ as (97)	
		2190				CD_2 as (97)
	2161 W 2161 W		2187		2189	CD_2 as (97) CD_2 as (97)
	2101 11	2099	210.			CD_2 ss (95)
	2109 W		2096	2099		$CD_2 ss (96)$ $CD_2 ss (96)$
	2109 W		2000		2095	$CD_2 ss (96)$
	1681 M		1677	1680		$COs(81)$, $CNs(17)$, $C^{\alpha}CNd(10)$ $COs(78)$, $CNs(19)$, $C^{\alpha}CNd(10)$
	1001 M	1665	1077			CO s (77), CN s (19), C CN d (10)
	1630 S			1406	1625	CO s (75), CN s (23), C $^{\alpha}$ CN d (11) CN s (33), C $^{\alpha}$ C s (26), CO ib (17), ND ib (17), NC $^{\alpha}$ s (16)
				1486	1474	$CN s (35), C^{\alpha}C s (20), CO ib (17), ND ib (17), NC s (16) CN s (29), C^{\alpha}C s (29), CO ib (18), NC^{\alpha} s (16), ND ib (15)$
	1460 S	1 400	1464			CN s (37), $C^{\alpha}C$ s (27), CO ib (21)
		1463	1244			CN s (36), $C^{\alpha}C$ s (28), CO ib (20) NC $^{\alpha}$ s (47), CD, w (34), $C^{\alpha}C$ s (23), ND ib (15)
		1243				NC^{α} s (47), CD_{2}^{-} w (35), $C^{\alpha}C$ s (23), ND ib (15)
	1101 W			1107	1106	CD ₂ w (37), CD ₂ b (27), $C^{\alpha}C$ s (19) CD ₂ w (37), CD ₂ b (28), $C^{\alpha}C$ s (17)
		1099	4			CD_{2}^{2} b (37), NC^{α} s (32)
	1075 W		1098	1056		CD_2 b (37), NC^{α} s (32) ND ib (50), CD_2 b (24)
					1046	CD, b (56), CD, w (34)
				1040		CD ₂ b (35), CD ₂ w (30), ND ib (17)
		1025			1020	ND ib (61), CO ib (14) CD ₂ b (54)
	1016 W		1024		07.0	CD_{2}^{2} b (54) NC^{α} s (66) , CN s (11)
				977	918	NC^{α} s (66), CN s (11) NC^{α} s (66), CN s (11)
	050 111	926	005			ND ib (40), CD ₂ w (26), CD ₂ tw (23)
	950 W		925	923		ND ib (37) , CD_2 w (28) , CD_2 tw (26) CD_2 tw (60)
	923 W					CD_2 tw (60)
	901 W	896	895			CD ₂ tw (66), ND ib (18) CD ₂ tw (63), ND ib (19)
		878				$CD_2 \le (20), CD_2 \le (17)$
	866 W		875		873	CD ₂ r (18), CD ₂ w (17) CN s (24), CD, tw (16)
				870		$CN s (26), CD_2 tw (16)$
		827				$CD_2 \text{ r} (30), CO \text{ ob } (18), CD_2 \text{ w} (14)$

Table III (Continued)

obs	erved ^a		calcul	ated		
Raman	IR	A_{g}	Au	Bg	Bu	potential energy distribution b
			826	795		CD ₂ r (29), CO ob (17), CD ₂ w (14) CD ₂ r (55), C ^α C s (13)
				190	792	$CD_2 = (55), C^{\alpha}C = (15)$ $CD_3 = (56), C^{\alpha}C = (13)$
						$C^{\alpha}C$ s (18), CO ib (14), NC $^{\alpha}C$ d (13), CD ₂ r (12)
				686		C°C s (17), CO ib (15), NC°C d (14), CD ₂ r (13)
	605 M			623	613	CO ob (62), CN t (17) CO ob (69), CN t (11)
	333	591				CO ib (54), C ^α C s (17), ND ib (11)
	554 M		$\frac{591}{542}$			CO ib (54), C ^{\alpha} C s (16), ND ib (11)
	554 M		942		532	CN t (35), CO ob (35), CD ₂ r (14) C°CN d (47), CD ₂ w (14)
				532		C°CN d (48), CD ₂ w (11), CN t (10)
		531		512		CO ob (50), CD_2 r (29) CN t (56), ND ob (42), ND···O ib (21), CO ob (17), D···O s (13),
				012		CD_2 w (12)
	493 S		509			$CN t (41), ND ob (30), CO ob (17), ND \cdots O ib (16), CO ob (15),$
	493 S				509	$D \cdot \cdot \cdot O s (12)$ CN t (70), ND ob (39), ND $\cdot \cdot \cdot O$ ib (24), D $\cdot \cdot \cdot O s (14)$
	490 0	502			505	$CN t (80), ND ob (32), ND \cdots O ib (24), D \cdots O s (14)$
				294		CO ib (32), NC αC d (26)
		272			293	CO ib (34), NC °C d (26) C °CN d (51), NC °C d (23)
		212	272			C°CN d (54), NC°C d (20)
					225	CNC^{α} d (35), ND ob (18), CO ib (11)
			214	225		$CNC^{\alpha} d (36)$, ND ob (26), CO ib (14) $CNC^{\alpha} d (68)$, CO ib (11)
		203	214			CNC^{α} d (75)
			176			ND ob (69), CO ob (20), CD ₂ w (11)
		174			120	ND ob (66), CO ob (16), CD ₂ w (13), $C^{\alpha}CN$ d (13)
		133			109	$D \cdot \cdot \cdot O s$ (48), CN t (44), ND ob (34), C $^{\alpha}$ C t (11) $D \cdot \cdot \cdot O s$ (31), CN t (29), NC $^{\alpha}$ C d (11)
				109		$D \cdot \cdot \cdot O s (78)$, $CN t (18)$
		0.0	100			$NC^{\alpha}C d (43), C^{\alpha}C t (17), ND ob (15), NC^{\alpha}t (15)$
		80		69		ND ob (43), NC $^{\alpha}$ C d (27), CN t (23), D $^{\alpha}$. · · D $^{\alpha}$ s (14), NC $^{\alpha}$ t (14) C $^{\alpha}$ C t (35), NC $^{\alpha}$ t (25), CN t (21), ND ob (20), ND· · · O ib (17)
			35			$ND \cdot \cdot \cdot O$ ib (38), $CO \cdot \cdot \cdot D$ ib (28), ND ob (19), $D \cdot \cdot \cdot O$ s (16)
		10		31		$ND \cdot \cdot \cdot O$ ib (36), $CO \cdot \cdot \cdot D$ ib (31), CN t (27), ND ob (16), NC^{α} t (1)
		12				ND t (52), CO t (34)
		0000				-(15NHCH ₂ CO)- _n
		3263	3263			NH s (98) NH s (98)
			0200	3263		NH s (98)
	$3262~\mathrm{S}^c$			2005	3263	NH s (98)
		2934		2935		CH ₂ as (98) CH ₂ as (98)
	$(2929 \text{ W})^d$	2001			2929	CH_2 as (99)
	(2929 W)		2928	0000		CH ₂ as (99)
		2865		2866		CH ₂ ss (98) CH ₂ ss (98)
	(2869 VW)	2000	2861			$CH_2 ss (99)$
	(2869 VW)			1004	2861	$CH_2 ss (99)$
	1685 M		1687	1694		CO s (77), CN s (14), C ^{\alpha} CN d (11) CO s (76), CN s (18), C ^{\alpha} CN d (11)
	1000 111	1675	1001			CO s (76), CN s (19), C ^α CN d (11)
	1635 S			1500	1640	CO s (71), CN s (20), C^{α} CN d (11)
				1592	1563	NH ib (56), CN s (18), $C^{\alpha}C$ s (12) NH ib (50), $C^{\alpha}C$ s (17), CN s (15)
	1503 S		1503			NH ib (32), CN s (27), $C^{\alpha}C$ s (19), CO ib (15)
		1502				NH ib (32), CN s (26), $C^{\alpha}C$ s (20), CO ib (15)
		1452	1452			CH ₂ b (67), CH ₂ w (14), NH ib (13) CH ₂ b (66), CH ₂ w (14), NH ib (13)
			1104	1441		CH ₂ b (96)
	1431 S	14.4			1438	CH ₂ b (96)
	(1408 W)	1414	1414			CH ₂ w (42), CH ₂ b (30), NH ib (15) CH ₂ w (41), CH ₂ b (33), NH ib (15)
	(1100 11)		****	1336		CH ₂ w (83), NH ib (11)
	(1338 W)			1901	1332	$CH_2 \times (80)$
	(1295 W)			1301	1285	NH ib (26), CO ib (19), CN s (19), $C^{\alpha}C$ s (15) NH ib (37), $C^{\alpha}C$ s (18), CO ib (17), CN s (13)
	,	1252				$CH_2 \text{ tw } (77), CH_2 \text{ w } (17)$
			1252	1242		$CH_{2} \text{ tw } (77), CH_{2} \text{ w } (17)$
	1235 M			1242	1240	CH ₂ tw (92) CH ₂ tw (92)
	_	1208				NH ib (24), NC $^{\alpha}$ s (23), CH ₂ w (20), CH ₂ tw (16), CN s (15)

Table III (Continued)

ob	served ^a	calculated				
Raman	IR	A_{g}	Au	Bg	Bu	potential energy distribution b
	1210 W		1207			NH ib (24), NC ^{\alpha} s (23), CH ₂ w (20), CH ₂ tw (16), CN s (15)
		1141				NC^{α} s (58), $C^{\alpha}C$ s (12), NH ib (10)
			1141			NC^{α} s (58), $C^{\alpha}C$ s (12), NH ib (10)
				1005		NC^{α} s (79), $C^{\alpha}C$ s (10)
	1010 M				1004	NC^{α} s (79), $C^{\alpha}C$ s (10)
		997	005			CH ₂ r (49), CO s (10)
	(007 W)		995		074	CH ₂ r (52)
	(987 W)			973	914	CH ₂ r (72) CH ₃ r (74)
		939		310		CH_2 r (25), CN s (13), $C^{\alpha}C$ s (13), $NC^{\alpha}C$ d (10)
	(936 M)	505	933			CH_{2}^{2} r (22), CN s (14), $C^{\alpha}C$ s (14), $NC^{\alpha}C$ d (11), CO s (10)
	(888 W)		000		881	C°C s (30), CN s (24), CO s (14)
	(/			881		$C^{\alpha}C s (32), CN s (27), CO s (13)$
				765		CO ib (16), CN t (16), NC $^{\alpha}$ s (14), C $^{\alpha}$ C s (13), NC $^{\alpha}$ C d (11), CNC $^{\alpha}$ d
						(10), NH ob (10)
					764	CO ib (17), $C^{\alpha}C$ s (17), NC^{α} s (15), $NC^{\alpha}C$ d (12), CNC^{α} d (11)
				735		CN t (60), NH···O ib (14), H···O s (10), NH ob (10)
	(= 00 G)		718		-1-	CN t (79), NH ob (26), NH···O ib (23), H···O s (11)
	(708 S)	700			717	CN t (73), NH···O ib (18), NH ob (15), H···O s (10)
		702				CN t (79), NH ob (29), NH···O ib (25), H···O s (15)
	626 W	625	624			CO ib (34), CO ob (26) CO ib (35), CO ob (25)
	611 M		024		618	CO ob (69), NH ob (14), C ^α CN d (12), NC ^α C d (10)
	011 141			609	010	CO ob (63), NH ob (14), C on d (12), NC oc d (10)
				000	581	C°CN d (49), CO ob (15)
				579		$C^{\alpha}CN d(46)$, CO ob (20), CH ₂ w (10)
		578				CO ob (44) , CO ib (30) , $C^{\alpha}C \cdot s(12)$
	(589 M)		577			CO ob (44), CO ib (29), $C^{\alpha}C$ s (11), CH_2 r (10)
				321		NC ^α C d (21), CO ib (17), NH ob (15)
	(320 W)				318	NC αC d (22), CO ib (18), NH ob (15)
		290				$C^{\alpha}CN d (51), NC^{\alpha}C d (21), NC^{\alpha} s (11)$
	(285 W)		290			$C^{\alpha}CN d (55), NC^{\alpha}C d (19), NC^{\alpha} s (12)$
				040	252	$CNC^{\alpha} d (41), CO ib (28)$
	(017 W)		224	249		$CNC^{\alpha} d (41), CO ib (30), NH ob (15)$ $CNC^{\alpha} d (68), H \cdots O s (10), CO ib (10)$
	(217 W)	212	224			$CNC^{\alpha} d (75)$
		212	176			NH ob (70), CO ob (19), CH, w (11)
		174	110			NH ob (67), CO ob (15), CH ₂ w (12), C $^{\alpha}$ CN d (11), NC $^{\alpha}$ s (10)
	(140 M, br)				139	$H \cdot \cdot \cdot O s (46)$, $CN t (45)$, $NH ob (37)$, $C^{\alpha}C t (12)$
	(=,,	135				$H \cdot \cdot \cdot O s (29)$, $CN t (25)$, $NC^{\alpha}C d (15)$
				110		$H \cdot \cdot \cdot O s (78)$, $CN t (18)$
			108			$NC^{\alpha}C d (46)$, NH ob (16), $C^{\alpha}C t (16)$, $NC^{\alpha} t (14)$
		87				NH ob (43), CN t (27), NC $^{\alpha}$ C d (26), H $^{\alpha}$. ··H $^{\alpha}$ s (13), NC $^{\alpha}$ t (12),
						$H \cdot \cdot \cdot O s (10)$
			0.7	70		$C^{\alpha}C$ t (35), NC^{α} t (24), NH ob (22), CN t (22), $NH \cdots O$ ib (16)
			37	0.1		$NH \cdot \cdot \cdot O \text{ ib } (38), CO \cdot \cdot \cdot H \text{ ib } (28), NH \text{ ob } (18), H \cdot \cdot \cdot O \text{ s } (17)$
		10		31		NH · · · O ib (36), CO · · · H ib (31), CN t (22), NH ob (17), NC $^{\alpha}$ t (13)
		12				NH t (52), CO t (34)

 a S = strong, M = medium, W = weak, V = very, br = broad. b s = stretch, as = antisymmetric stretch, ss = symmetric stretch, b = angle bend, ib = in-plane angle bend, ob = out-of-plane angle bend, w = wag, r = rock, t = torsion, d = deformation, tw = twist. Only contributions of 10% or greater are included. c Unperturbed frequency (cf. ref 5; same approach used for other isotopic species). d From -(NHCH₂CO)- $_n$, presumed to be unshifted (ref 17).

diagonal force constant is that of $f(\text{CNC}^{\alpha})$ (from 0.787 to 0.687), and this is undoubtedly due primarily to the introduction of the new off-diagonal constant f-(CNC $^{\alpha}$,C $^{\alpha}$ NH). The relatively large changes in some of the off-diagonal force constants are probably mainly a result of the additional constants in the force field. Dispersions in the refined force constants (average percent in parentheses) were f = 0.08-0.17 (14), f = 0.01-0.08 (30), and $f \leq 0.01$ (53).

Results and Discussion

The observed and calculated frequencies of APRS (Gly I)_n and its isotopic derivatives are given in Table III. The infrared data for the deuterated species are from Suzuki et al.¹⁷ For the ¹⁵N molecule no spectra were shown, ¹⁷ and only the shifts for some bands were tabulated. These are listed in Table III, with (presumed) unshifted bands given in parentheses.

The assignment of the modes for $-(NHCH_2CO)-_n$ is the same as that given previously.⁵ The average discrepancy between observed and calculated frequencies is somewhat better for our present calculation (5.4 vs. 6.2 cm⁻¹ for frequencies below 1700 cm⁻¹), but there is a significant improvement with respect to the prediction of CH2 wag and CH₂ twist modes, in particular the observed bands at 1410, 1408, 1338, and 1234 cm⁻¹. There is also some improvement in the low-frequency region for CNC^a deformation modes. Many modes in the two calculations have somewhat different potential energy distributions, which is not surprising since different force constants as well as different values for some of the same force constants were used. In most cases the same internal coordinates contribute, though to somewhat differing extents. In some instances there is a significant difference in the contributing coordinates. For example: 1460 (Raman)—CH₂ bend (97)⁵ vs. CH₂ bend (66), CH₂ wag (16); 1410 (Raman),

1408 (infrared)—CH₂ wag (60), NH ib (19), $C^{\alpha}C$ s (17)⁵ vs. CH₂ wag (40), CH₂ bend (33), NH ib (13); 1234 (Raman)—CH₂ twist (76), NH ib (12)⁵ vs. CH₂ twist (93). A similar situation exists for the mode at 82 cm⁻¹, due primarily to the change in the value of $f(H^{\alpha} \cdots H^{\alpha})$.

For the deuterated molecules the overall agreement is reasonable and comparable to that obtained by Abe and Krimm.⁴ It must be remembered that in the present study the frequencies of the isotopic molecules were not included in the least-squares refinement, which was done in the earlier work⁴ (the latter also used the APPS structure). It should not be surprising, therefore, if, for example, CD₂ stretching frequencies are poorly reproduced, since they contain anharmonicities significantly different from those of CH₂ modes. In fact, it was for this reason that isotopic frequencies were not included in the present refinement, since we did not wish to bias the typical calculations on hydrogenated molecules. For $-(NDCH_2CO)-_n$ the average discrepancy for the observed infrared bands below 1700 cm⁻¹ is 5.5 cm⁻¹, comparable to what we found for $-(NHCH_2CO)-_n$. We have determined the unperturbed ND stretching frequency by the same Fermi resonance analysis as used previously⁵ (although in this case relative intensities could only be roughly estimated from the given data¹⁷). The disagreement with the calculated value is probably due to anharmonicity effects. (The combination band here is also of lower frequency, ~2425 cm⁻¹, than the fundamental and probably involves modes with CN stretch and ND in-plane bend; e.g., $1475~(A_u) + 939~(B_g) = 2414~(B_u)$ and $1486~(B_g) + 950~(A_u) = 2436~(B_u)$. The downward shift of about 5 cm⁻¹ in the amide I modes is well reproduced. The so-called amide II' mode, at 1475 cm⁻¹, is seen to contain a large $C^{\alpha}C$ stretch contribution in addition to the expected¹⁷ CN stretch contribution, as found before.⁴ The so-called amide III' mode, at 950 cm⁻¹, thought to be mainly ND in-plane bend, 17 is, in fact, largely CH₂ rock, as noted earlier.⁴ And as with -(NHCH₂CO)-_n, CO inplane bend and CO out-of-plane bend mix heavily in the so-called amide VI mode. For $-(NHCD_2CO)-_n$ the large drop in amide II, from 1517 to 1498 cm⁻¹, is reproduced only qualitatively. This may be due to the fact that different transition dipole coupling parameters are to be associated with the deuterated as compared to the fully hydrogenated molecule (the potential energy distributions are certainly different). The CD2 bend, wag, and twist frequencies are well reproduced, except for the wag plus rock mode at 866 cm⁻¹. The presence of the wag contribution may also account for the discrepancy in the 564cm⁻¹ band. For $-(NDCD_2CO)-_n$ bands at 1075 and 950 cm⁻¹ show large discrepancies, but the other bands are well reproduced. Considering that the force field was transferred from the hydrogenated molecule without change and that anharmonicities are not taken into account, the

present force field can be considered to reproduce the 39 frequencies (below 1700 cm⁻¹) of the deuterated molecules quite well.

The shifts predicted for $-(^{15}NHCH_2CO)_{-n}$ are seen to be in good agreement with those observed. The observed 14-cm⁻¹ shift in amide II in particular is well reproduced, as is the next largest shift in the skeletal mode at 1016 cm⁻¹. It is also of interest that the 10-cm⁻¹ decrease in the unperturbed NH stretch is well reproduced by the calcu-

Conclusions

The present study has resulted in a small modification of the previously refined⁵ force field for $(Gly I)_n$. This has produced, however, significant improvement in the prediction of most of the CH₂ modes, with about the same agreement for the others. This force field satisfactorily accounts for the frequencies of isotopically substituted molecules and, as we will see in the next paper, is better transferable to β -(Ala)_n. It thus provides a more secure basis for the vibrational analysis of peptide systems.

Acknowledgment. This research was supported by National Science Foundation Grants PCM-7921652 and DMR-7800753. A.M.D. expresses appreciation to the Macromolecular Research Center for fellowship support.

References and Notes

- (1) Jakeš, J.; Krimm, S. Spectrochim. Acta, Part A 1971, 27a, 19.
- Jakeš, J.; Krimm, S. Spectrochim. Acta, Part A 1971, 27a, 35. Abe, Y.; Krimm, S. Biopolymers 1972, 11, 1817.
- Abe, Y.; Krimm, S. Biopolymers 1972, 11, 1841. Moore, W. H.; Krimm, S. Biopolymers 1976, 15, 2439. Lotz, B. J. Mol. Biol. 1974, 87, 169.
- Moore, W. H.; Krimm, S. Biopolymers 1976, 15, 2465.
- Arnott, S.; Dover, S. D.; Elliott, A. J. Mol. Biol. 1967, 30, 201.
- Rabolt, J. F.; Moore, W. H.; Krimm, S. Macromolecules 1977, 10, 1065
- (10) Krimm, S.; Abe, Y. Proc. Natl. Acad. Sci. U.S.A. 1972, 69, 2788.
- (11) Moore, W. H.; Krimm, S. Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 4933.
- (12) Bandekar, J.; Krimm, S. Proc. Natl. Acad. Sci. U.S.A. 1979,
- (13) Krimm, S.; Bandeker, J. Biopolymers 1980, 19, 1
- Bandekar, J.; Krimm, S. Biopolymers 1980, 19, 31.
- (15) Bandekar, J.; Krimm, S. In "Peptides: Structure and Biological Function"; Gross, E., Meienhofer, J., Eds.; Pierce Chemical Co.: Rockford, Ill., 1979; p 241.
- (16) Maxfield, F. R.; Bandekar, J.; Krimm, S.; Evans, D. J.; Leach, S. J.; Némethy, G.; Scheraga, H. A. Macromolecules 1981, 14,
- (17) Suzuki, S.; Iwashita, Y.; Shimanouchi, T.; Tsuboi, M. Bio-polymers 1966, 4, 337.
- (18) Dwivedi, A. M.; Krimm, S. Macromolecules, following paper in this issue.
- Small, E. W.; Fanconi, B.; Peticolas, W. J. Chem. Phys. 1970,